Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2774: 233-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441768

RESUMO

Physical cues such as light, heat, or an electrical field can be utilized for traceless, on-demand activation of the expression of a desired therapeutic gene in appropriately engineered cells with excellent spatiotemporal resolution, good inducibility, and simple reversibility. A similar approach can be applied to build a depolarization-based protein secretion system that enables rapid release of a therapeutic protein pre-stored in intracellular vesicles in mammalian cells. Here, we present a protocol to create designer ß-cells that exhibit light-controllable rapid release (within 15 min) of a pre-synthesized proinsulin-nanoluciferase construct from vesicular stores. The construct is cleaved extracellularly to afford secreted insulin as a therapeutic protein and nanoluciferase as a reporter molecule. Such posttranslational remote control offers a much faster response than expression-based systems.


Assuntos
Sinais (Psicologia) , Células Secretoras de Insulina , Animais , Transporte Biológico , Eletricidade , Temperatura Alta , Mamíferos
2.
Chembiochem ; : e202300717, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081780

RESUMO

Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.

3.
Adv Mater ; 35(21): e2300890, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893359

RESUMO

Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.


Assuntos
Fontes de Energia Bioelétrica , Glicemia , Humanos , Glucose/metabolismo , Automonitorização da Glicemia , Reprodutibilidade dos Testes , Insulina
4.
Nucleic Acids Res ; 51(1): e1, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36268868

RESUMO

The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.


Assuntos
Peptídeo Hidrolases , Processamento de Proteína Pós-Traducional , Biologia Sintética , Animais , Camundongos , Ácido Abscísico , Diabetes Mellitus Experimental , Endopeptidases/metabolismo , Insulina/genética , Insulina/metabolismo , Mamíferos/metabolismo , Peptídeo Hidrolases/metabolismo , Sistemas de Translocação de Proteínas , Biologia Sintética/métodos
5.
Small ; 18(41): e2202566, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084222

RESUMO

Biopharmaceutical manufacturing requires specialized facilities and a long-range cold supply chain for the delivery of the therapeutics to patients. In order to produce biopharmaceuticals in locations lacking such infrastructure, a production process is designed that utilizes the trigger-inducible release of large quantities of a stored therapeutic protein from engineered endocrine cells within minutes to generate a directly injectable saline solution of the protein. To illustrate the versatility of this approach, it is shown that not only insulin, but also glucagon-like peptide 1 (GLP-1), nanoluciferase (NLuc), and the model biopharmaceutical erythropoietin (EPO) can be trigger-inducibly released, even when using biologically inactive insulin as a carrier. The facilitating beta cells are engineered with a controllable TRPV1-mediated Ca2+ influx that induces the fusion of cytoplasmic storage vesicles with the membrane, leading to the release of the stored protein. When required, the growth medium is exchanged for saline solution, and the system is stimulated with the small molecule capsaicin, with a hand-warming pack, or simply by using sunlight. Injection of insulin saline solution obtained in this way into a type-1 diabetes mouse model results in the regulation of blood glucose levels. It is believed that this system will be readily adaptable to deliver various biopharmaceutical proteins at remote locations.


Assuntos
Produtos Biológicos , Eritropoetina , Animais , Glicemia/metabolismo , Capsaicina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina , Camundongos , Fragmentos de Peptídeos , Solução Salina , Luz Solar
6.
Curr Opin Chem Biol ; 68: 102151, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483127

RESUMO

Electrogenetics, the combination of electronics and genetics, is an emerging field of mammalian synthetic biology in which electrostimulation is used to remotely program user-designed genetic elements within designer cells to generate desired outputs. Here, we describe recent advances in electro-induced therapeutic gene expression and therapeutic protein secretion in engineered mammalian cells. We also review available tools and strategies to engineer electro-sensitive therapeutic designer cells that are able to sense electrical pulses and produce appropriate clinically relevant outputs in response. We highlight current limitations facing mammalian electrogenetics and suggest potential future directions for research.


Assuntos
Engenharia Celular , Células , Estimulação Elétrica , Genética , Mamíferos , Biologia Sintética , Animais , Engenharia Celular/métodos , Fenômenos Fisiológicos Celulares/genética , Células/metabolismo , Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica , Eletrônica , Regulação da Expressão Gênica , Mamíferos/genética , Biossíntese de Proteínas , Biologia Sintética/métodos , Telemetria
7.
Protein Cell ; 13(7): 476-489, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34586617

RESUMO

Cell therapy approaches that employ engineered mammalian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine. The therapeutic cells can be customized to sense user-defined signals, process them, and respond in a programmable and predictable way. In this paper, we introduce the available tools and strategies employed to design therapeutic cells. Then, various approaches to control cell behaviors, including open-loop and closed-loop systems, are discussed. We also highlight therapeutic applications of engineered cells for early diagnosis and treatment of various diseases in the clinic and in experimental disease models. Finally, we consider emerging technologies such as digital devices and their potential for incorporation into future cell-based therapies.


Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Animais , Engenharia Celular , Engenharia Genética , Humanos , Mamíferos/genética
8.
Adv Sci (Weinh) ; 8(21): e2101813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496151

RESUMO

Body temperature is maintained at around 37 °C in humans, but may rise to 40 °C or more during high-grade fever, which occurs in most adults who are seriously ill. However, endogenous temperature sensors, such as ion channels and heat-shock promoters, are fully activated only at noxious temperatures above this range, making them unsuitable for medical applications. Here, a genetically encoded protein thermometer (human enhanced gene activation thermometer; HEAT) is designed that can trigger transgene expression in the range of 37-40 °C by linking a mutant coiled-coil temperature-responsive protein sensor to a synthetic transcription factor. To validate the construct, a HEAT-transgenic monoclonal human cell line, FeverSense, is generated and it is confirmed that it works as a fever sensor that can temperature- and exposure-time-dependently trigger reporter gene expression in vitro and in vivo. For translational proof of concept, microencapsulated designer cells stably expressing a HEAT-controlled insulin production cassette in a mouse model of type-1 diabetes are subcutaneously implanted and topical heating patches are used to apply heat corresponding to a warm sensation in humans. Insulin release is induced, restoring normoglycemia. Thus, HEAT appears to be suitable for practical electrothermal control of cell-based therapy, and may also have potential for next-generation treatment of fever-associated medical conditions.


Assuntos
Plasmídeos/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/metabolismo , Camundongos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Temperatura , Termômetros
9.
Small ; 17(35): e2101939, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34227232

RESUMO

Emerging digital assessment of biomarkers by linking health-related data obtained from wearable electronic devices and embedded health and fitness sensors in smartphones is opening up the possibility of creating a continuous remote-monitoring platform for disease management. It is considered that the built-in flashlight of smartphones may be utilized to remotely program genetically engineered designer cells for on-demand delivery of protein-based therapeutics. Here, the authors present smartphone-induced insulin release in ß-cell line (iß-cell) technology for traceless light-triggered rapid insulin secretion, employing the light-activatable receptor melanopsin to induce calcium influx and membrane depolarization upon illumination. This iß-cell-based system enables repeated, reversible secretion of insulin within 15 min in response to light stimulation, with a high induction fold both in vitro and in vivo. It is shown that programmable percutaneous remote control of implanted microencapsulated iß-cells with a smartphone's flashlight rapidly reverses hyperglycemia in a mouse model of type-1 diabetes.


Assuntos
Diabetes Mellitus , Smartphone , Animais , Glucose , Homeostase , Insulina , Secreção de Insulina , Camundongos
10.
Nat Commun ; 12(1): 3388, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099676

RESUMO

Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.


Assuntos
Proteínas de Bactérias/efeitos da radiação , Diabetes Mellitus Tipo 2/terapia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Optogenética/métodos , Transativadores/efeitos da radiação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Celular , Diabetes Mellitus Tipo 2/genética , Feminino , Engenharia Genética , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Humanos , Luz , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Obesos , Optogenética/instrumentação , Fotopletismografia/instrumentação , Domínios Proteicos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação , Thermus thermophilus/genética , Transativadores/genética , Transativadores/metabolismo , Transgenes , Dispositivos Eletrônicos Vestíveis
11.
Methods Mol Biol ; 2173: 189-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651919

RESUMO

Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.


Assuntos
Optogenética/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Engenharia Celular/métodos , Células HEK293 , Humanos , Modelos Biológicos , Receptores Acoplados a Proteínas G/genética , Biologia Sintética
12.
Nat Commun ; 11(1): 3085, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555187

RESUMO

Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells. TCSs are the most abundant multi-component signal-processing units in bacteria, but are not found in the animal kingdom. The presented phosphoregulated orthogonal signal transduction (POST) system uses induced nanobody dimerization to regulate the trans-autophosphorylation activity of engineered histidine kinases. Engineered response regulators use the phosphohistidine residue as a substrate to autophosphorylate an aspartate residue, inducing their own homodimerization. We verify this approach by demonstrating control of gene expression with engineered, dimerization-dependent transcription factors and propose a phosphoregulated relay system of protein dimerization as a basic building block for next-generation protein circuits.


Assuntos
Histidina Quinase/metabolismo , Transdução de Sinais , Tecido Adiposo/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Histidina/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Nanotecnologia , Fosforilação , Domínios Proteicos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Biologia Sintética , Fatores de Transcrição/metabolismo
13.
Sci Rep ; 9(1): 13342, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527750

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR2) and its ligands (VEGFs) are crucial players in vasculogenesis and angiogenesis. General blocking of this signaling system with antibodies or small molecule inhibitors is an established strategy to treat cancer and age-related macular degeneration. Nevertheless, the activated receptor can signal to discrete downstream signaling pathways and the equilibrium between these pathways is modulated by coreceptors and distinct isoforms of VEGF. Here we investigated the influence of Rab GTPase activating proteins (RabGAPs) on VEGFR2 signaling, tube formation, and migration of endothelial cells. We demonstrate that members of the TBC1D10 subfamily of RabGAPs have opposite effects. Whereas TBC1D10A leads to increased Erk1/2 signaling, TBC1D10B lowered Erk1/2 and p38 signaling and reduced tube formation in vitro. TBC1D10A is a RabGAP acting on RAB13 that was shown before to play a role in angiogenesis and we could indeed show colocalization of these two proteins with VEGFR2 in activated cells. In addition, we observed that cells expressing TBC1D10B show lower expression of VEGFR2 and NRP1 on filopodia of activated cells. Taken together, our systematic analysis of influence of RabGAPs on VEGFR2 signaling identifies the TBC1D10 subfamily members as modulators of angiogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neuropilina-1/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
14.
Adv Sci (Weinh) ; 6(1): 1800952, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30643713

RESUMO

The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology-inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light-controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non-neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light-sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light-controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.

15.
Plasmid ; 98: 1-7, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29842913

RESUMO

Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.


Assuntos
Baculoviridae/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Plasmídeos/administração & dosagem , Animais , Humanos
16.
Biotechnol Adv ; 36(4): 871-879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29374595

RESUMO

Systems for multigene delivery in mammalian cells, particularly in the context of genome engineering, have gained a lot of attention in biomolecular research and medicine. Initially these methods were based on RNA polymerase II promoters and were used for the production of protein complexes and for applications in cell biology such as reprogramming of somatic cells to stem cells. Emerging technologies such as CRISPR/Cas9-based genome engineering, which enable any alteration at the genomic level of an organism, require additional elements including U6-driven expression cassettes for RNA expression and homology constructs for designed genome modifications. For these applications, systems with high DNA capacity, flexibility and transfer rates are needed. In this article, we briefly give an update on some of recent strategies that facilitate multigene assembly and delivery into mammalian cells. Also, we review applications in various fields of biology that rely on multigene delivery systems.


Assuntos
Engenharia Genética , Mamíferos/genética , Família Multigênica/genética , Animais , Técnicas de Transferência de Genes
17.
Plasmid ; 90: 5-9, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119062

RESUMO

Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS).


Assuntos
Baculoviridae/genética , Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Edição de Genes/métodos , Engenharia Genética/métodos , Proteína HMGA1a/genética , Animais , Baculoviridae/metabolismo , Quebras de DNA de Cadeia Dupla , Endonucleases/metabolismo , Células HEK293 , Proteína HMGA1a/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Células Sf9 , Spodoptera
18.
Nat Commun ; 7: 11529, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27143231

RESUMO

Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells.


Assuntos
Baculoviridae/genética , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transfecção/métodos , Animais , Células COS , Sistemas CRISPR-Cas/genética , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Células Sf9 , Transgenes/genética
19.
Biotechniques ; 59(5): 309-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26554508

RESUMO

Quantitative image analysis plays an important role in contemporary biomedical research. Squassh is a method for automatic detection, segmentation, and quantification of subcellular structures and analysis of their colocalization. Here we present the applications Squassh3C and SquasshAnalyst. Squassh3C extends the functionality of Squassh to three fluorescence channels and live-cell movie analysis. SquasshAnalyst is an interactive web interface for the analysis of Squassh3C object data. It provides segmentation image overview and data exploration, figure generation, object and image filtering, and a statistical significance test in an easy-to-use interface. The overall procedure combines the Squassh3C plug-in for the free biological image processing program ImageJ and a web application working in conjunction with the free statistical environment R, and it is compatible with Linux, MacOS X, or Microsoft Windows. Squassh3C and SquasshAnalyst are available for download at www.psi.ch/lbr/SquasshAnalystEN/SquasshAnalyst.zip.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Filmes Cinematográficos , Imagem Óptica/métodos , Software , Interpretação Estatística de Dados , Internet
20.
Plasmid ; 75: 12-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25034976

RESUMO

Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages.


Assuntos
Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Complexos Multiproteicos/genética , Animais , Clonagem Molecular , Mamíferos/genética , Complexos Multiproteicos/metabolismo , Plasmídeos/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...